X3DOM
A DOM-based HTML5/ X3D Integration Model

3. Feb. 2010, Clausthal University

Johannes Behr
Peter Eschler, Y. Jung, M. Zöllner,

Virtual and Augmented Reality Group,
Darmstadt
johannes.behr@igd.fraunhofer.de
Overview

Introduction and Motivation
Current State of 3D on the net
X3DOM Model
 System Architecture
 Web Profile
 DOM integration aspects
Implementation
 Native/Extension
 SAI/object based
 O3D based
 WebGL based
 Multi-backend Hybrid
Conclusion and Future Work
15 years of Web3D technology
Initial hardware and network limitations are gone
- phones render millions of polygons per second
- broadband connection in almost every home
X3D established and solid technology
 - Successfully used in various application areas
 - But: Very view web application today!
Increasing interest in 3D web technology
 - Fat-client based: Second-Life, GoogleEarth, Games (e.g. WOW), …
 - Browser based: X3D, O3D, WebGL/Khronos, …
HTML5 group shows interest in 3D technology
 - OpenGL (ES) as programming interface
 - X3D for declarative content
Current State of 3D on the net
Browser solution – plugin based

General issues:
Installation, security and browser/OS incompatibility
System specific interfaces to access/manipulate the content

Flash (Adobe)
< Version 10: 2D pipeline used for 3D (e.g. Papervision)
>= Version 10: Minimal 3D transformation for 2D elements

Silverlight (Microsoft)
< Version 3: 2D pipeline (there was a 3D pipeline in Avalon/WFC!)
>= Version 3: Minimal 3D transformation for 2D elements

Java, Java3D, JOGL and JavaFX (SUN)

O3D (Google): Javascript based scene-graph API

X3D (ISO, web3d consortium): plugins with SAI interface

MPEG-4 & MPEG-4 Part 11 (ISO, Moving Picture Experts Group)
Current State of 3D on the net
Browser solution – Rendering without plugins

General advantage:
No plugin installation issues
Vis./Runtime can be part of the content

SVG Renderer:
3D rendering with 2D pipeline
Google chrome experiments / pre3d

CSS Renderer:
3D transformation for 2D elements
WebKit/Opera extensions

OpenGL based:
WebGL (plus scene-graph, e.g. C3DL)
Canvas3D / Opera GL Canvas
Current State of 3D on the net
Native HTML5

Object/plugin based
 Model is separated from DOM model
 Separate data/event model
 plugin specific scripting interface (e.g. SAI for X3D)

WebGL
 Based on Canvas3D (Mozilla)
 Developed with Khronos group
 Exposes the OpenGL layer to JavaScript

3D scenes (HTML5 specification)
 12.2 Declarative 3D scenes
 Embedding 3D imagery into XHTML documents is the domain of X3D, or technologies bases on X3D that are namespace aware.
X3DOM
A DOM-based HTML5/X3D Integration Model

Allows to embed XML-X3D content inside of every XHTML & HTML page
Uses XML-namespaces to separate X3D content from XHTML content
 => Follows HTML5 declaration
Works with HTML without namespaces but encoding restrictions
X3D content represents a live scene-graph
 Not a single import like the SAI document-import
Provides a single in-place rendering architecture (like e.g. SVG)
Supports updates in both direction
 X3D and DOM events
Presents a declarative interface but no API
 Not a small plugin API but wide content interface
Declaration is independent of runtime implementation style
 Supports native, plugin, or JS+WebGL/O3D implementation
Supports content specific runtime or runtime-extension
DOM Integration Issues

XHTML namespaces: xmlns defines namespace

```xml
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<body>
<h1>X3D DOM integration and manipulation</h1>
<x3d:x3d xmlns:x3d="http://www.web3d.org/specifications/x3d-3.0.xsd">
  <x3d:Scene>
    <x3d:Shape><x3d:Box x3d:size="4 4 4" /></x3d:Shape>
  </x3d:Scene>
</x3d:x3d>
</body>
</html>
```
DOM Integration Issues
XHTML namespaces: Default namespaces

```xml
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<body>
<!-- All elements within the x3d elements belong to the x3d namespace -->
<x3d xmlns="http://www.web3d.org/specifications/x3d-3.0.xsd">
  <Scene>
    <Shape><Box size="4 4 4" /></Shape>
  </Scene>
</x3d>
</body>
</html>
```
DOM Integration Issues
Accessing elements in x3d namespace

```xml
<x3d xmlns="http://www.web3d.org/specifications/x3d-3.0.xsd">
  <Scene> <Shape><Box size="4 4 4" /></Shape> </Scene>
</x3d>

<script type="text/javascript">
  // The namespace URIs
  var x3d_ns = "http://www.web3d.org/specifications/x3d-3.0.xsd";
  // Get elements using namespaces
  var box = document.getElementsByTagNameNS(x3d_ns, "Box")[0];
  // Edit an attribute of the <Box /> element
  alert(box.getAttributeNS(null, "size"));
  box.setAttributeNS(null, "size", "2 2 2");
  alert(box.getAttributeNS(null, "size"));
</script>
```
DOM Integration Issues
Events from the X3D subsystem

```xml
<x3d xmlns="http://www.web3d.org/specifications/x3d-3.0.xsd">
  <Scene>
    <Shape><Box size="4 4 4" /></Shape>
    <VisibilitySensor id="vs" DEF="vs" size="4 4 4" />
  </Scene>
</x3d>

<script type="text/javascript">
  var x3d_ns = "http://www.web3d.org/specifications/x3d-3.0.xsd";
  // Get elements using namespaces
  var x3d = document.getElementsByTagNameNS(x3d_ns, "x3d")[0];
  var vs = x3d.getElementsByTagName("VisibilitySensor")[0];
  vs.addEventListener("enterTime",
    function() { alert("There is a Box!"); }, false);
</script>
```
DOM Integration Issues
User Interaction through DOM Events

```xml
<x3d xmlns="http://www.web3d.org/specifications/x3d-3.0.xsd">
  <Scene>
    <Shape>
      <Appearance>
        <Material diffuseColor='1 0 0' DEF='mat' id='mat' />
      </Appearance>
      <Box size="4 4 4" onclick="document.getElementById('mat').diffuseColor='0 1 0'" />
    </Shape>
  </Scene>
</x3d>
```
DOM Integration Issues

HTML5: no ns, lower-case tags and no self-closing tags

<!DOCTYPE html >
<html xmlns="http://www.w3.org/1999/xhtml">
<body>
 <h1>X3D DOM integration and manipulation</h1>
 <x3d>
 <scene>
 <shape>
 <box size="4 4 4" />
 </shape>
 </scene>
 </x3d>
</body>
</html>
DOM Integration Issues

Open issues

How should we handle HTML5 events and event attributes in general
e.g. events in X3D and/or node elements?

Identifying elements
X3D DEF vs. XML id and class

id and class already defined in x3d xsd

Multi-parent x3d-scene-graph relation
<Group USE='foo' /> replaces the element with a link to ‘foo’

Introduce explicit < USE /> element?

X3D elements
Specific attributes e.g. x, y, width and height, …
Scene access interface (SAI) on X3D elements

X3D specific JavaScript objects (e.g. to access a specific triangle)

CSS integration: Separation of content and presentation style?

Content partitioning: X3D-Inlines and X3D-Protos vs. XML href?

Alternative: PHP includes: […] include “someCode.php”;
X3DOM
Specific Profile: Subset for valid HTML/XHTML tags

Specific X3D-profile for DOM content
- No `Script` nodes
- No `Proto` types
- No `PointingSensor` types
- `Inline` from network component

Supports animation for per-frame updates
- `TimeSensor`
- `Interpolator`
- `Follower` (Damper and Chaser)

Reduces complexity
- Eases implementation
- Utilizes xhtml for scripting and distribution

Reduces X3DOM to visualisation component for 3D like SVG or canvas for 2D
X3DOM
System Architecture / IUA/X3D runtime
Implementation
X3D Runtime for DOM Content

Needs to run the X3D content in-place
Needs to monitor creation/deletion of X3D elements
Needs read/write ACCESS to DOM elements
 Update the X3D graph on DOM changes (e.g. script set)
 Update the DOM element on X3D changes (e.g. animation)
Needs to fetch “Inlined” content
Needs to fetch and download AV-media
 Images, Movie and Sound
Needs to feed the rendered back to browser
Needs to render asynchronously
Implementation
Native/extension based implementation

Needs to monitor creation/deletion of X3D elements
 C/C++ access to DOM elements browser specific (e.g. Mozilla ext.)
 ActiveX and NSAPI do not allow to monitor DOM elements

Needs read/write ACCESS to DOM elements
 X3D updates: C++ Observer
 DOM updates: C++ Observer

Fetch “Inlined” content
 Uses browser infrastructure to download DOM document

Needs to fetch and download AV-media
 Uses browser libs to fetch/process Images, Movies and Sound

Pro: Performance, very flexible (e.g. remote rendering)
Con: Browser specific
Implementation
SAI-plugin based implementation

- Needs to monitor creation/deletion of X3D elements
 - DOM not accessible through plugin-interface
 - Needs additional JavaScript wrapper/extension (e.g. jetpack)
 => creates one plugin/object for every x3d element
- Needs read/write ACCESS to DOM elements
 - X3D updates: DOM Mutation Events
 - DOM updates: SAI callbacks
- Needs to fetch “Inlined” content and AV-media
 - Works through X3D runtime

Pro: Uses standard SAI plugin; high availability
Con: Plugin installation issues
Implementation
O3D based implementation

Needs to monitor creation/deletion of X3D elements

- Needs additional JavaScript wrapper/extension (e.g. jetpack)
 => creates one O3D context for every x3d element

Needs read/write ACCESS to DOM elements

- X3D/O3D updates: DOM Mutation Events
- DOM updates: javascript callbacks

Needs to fetch “Inlined” content

- Uses browser infrastructure to download DOM document

Needs to fetch and download AV-media

- Images: O3D-textures; Sound: O3D-Layer; Movie: still open

Pro: No extra plugin (just O3D), allows content specific runtime
Con: Complexity, Needs O3D plugin
Implementation
WebGL based implementation

Needs to monitor creation/deletion of X3D elements
 Needs additional JavaScript wrapper/extension (e.g. jetpack)
 => creates one canvas for every x3d element
Needs read/write ACCESS to DOM elements
 X3D updates: DOM Mutation Events
 DOM updates: javascript callbacks
Needs to fetch "Inlined" content
 Uses browser infrastructure to download DOM document
Needs to fetch and download AV-media
 Images: easy, Movie: easy, 3D-Sound: impossible

Pro: No plugin, allows content specific runtime
Con: Performance
Implementation
Multi-Backend Hybrid: x3dom.org

X3D Element detected

Do nothing

UA supports X3D?

initiate plugin & bidirectional update-system for SAI

X3D/SAI plugin installed?

build & update X3D/js - scenegraph on top of O3D

O3D plugin installed?

build & update X3D/js - scenegraph on top of WebGL

UA supports WebGL?

X3D/HTML5 intermediated fallback model (provided by X3DOM.org right now)

Current implementation state

Implemented

Partially implemented

Not implemented

Show alternative non-interactive image/video
Implementation
x3dom.org

Open-Source (MIT/GPL)
JavaScript (JS 5-setter for field-updates)
Needs single line per X(HTML)-Page

<script type="text/javascript" src="http://x3om.org/x3dom/release/x3dom.js" /></script>

WebGL-Backend
Simple - JavaScript – Scenegraph
Simplified State Model (e.g. field-types)
One SG-Node-Type per X3D-Node-Type
N-1 Node relation (DEF/USE)
OpenGL ES 2.0 Render:
No FFP, glsl-shader based
Modern shading (e.g. Pixel-lighting)
Conclusion

DOM-based integration model for X3D and HTML5
Exploits the current X3D and HTML5 standard
DOM represents a live X3D scene
 Read/Write access on scene data
 Event from/to the X3D runtime
X3DOM specific X3D-profile
 Reduces X3D subset to rendering system
 Eases implementation
Architecture supports various implementation models
 Native/Browser, SAI-plugin, O3D or WebGL
x3dom.org implementation
 Open-source, JS, WebGL-Backend
Future Work

Standardisation:
- Architecture was presented to the web3d working group
- Accepted as one model to be presented to W3C working group
- Architecture was presented to the W3c/HTML working group (TPAC)
 - Official HTML5 “bug” to integrate X3D
- Developed further through the X3D/HTML5 wiki
 (http://www.web3d.org/x3d/wiki/index.php/X3D_and_HTML5)

Implementation:
- JS-Scenegraph
 - Components and nodes
 (Follower, Geo-Spatial, Environment-Sensor, CommonShader)
 - Navigation types (e.g. fly, walk, look-at)
- SAI-Field-access
- SAI-Plugin support
- O3D-Backend
Thank you!
Questions?