Amortized Analysis
(CLRS 17.1-17.3)

1 Amortized Analysis

- After discussing algorithm design techniques (Dynamic programming and Greedy algorithms) we now return to data structures and discuss a new analysis method—Amortized analysis.

- Until now we have seen a number of data structures and analyzed the worst-case running time of each individual operation.

- Sometimes the cost of an operation vary widely, so that that worst-case running time is not really a good cost measure.

- Similarly, sometimes the cost of every single operation is not so important
 - the total cost of a series of operations are more important (e.g. when using priority queue to sort)

 \[\downarrow \]

- We want to analyze running time of one single operation averaged over a sequence of operations
 - Note: We are not interested in an average case analyses that depends on some input distribution or random choices made by algorithm.

- To capture this we define amortized time.

 If any sequence of \(n \) operations on a data structure takes \(\leq T(n) \) time, the amortized time per operation is \(T(n)/n \)

 - Equivalently, if the amortized time of one operation is \(U(n) \), then any sequence of \(n \) operations takes \(n \cdot U(n) \) time.

- Again keep in mind: “Average” is over a sequence of operations for any sequence
 - not average for some input distribution (as in quick-sort)
 - not average over random choices made by algorithm (as in skip-lists)
1.1 Example: Stack with MULTIPOP

- As we know, a normal stack is a data structure with operations
 - PUSH: Insert new element at top of stack
 - POP: Delete top element from stack

- A stack can easily be implemented (using linked list) such that PUSH and POP takes \(O(1) \) time.

- Consider the addition of another operation:
 - MULTIPOP\((k)\): POP \(k \) elements off the stack.

- Analysis of a sequence of \(n \) operations:
 - One MULTIPOP can take \(O(n) \) time \(\Rightarrow O(n^2)\) running time.
 - Amortized running time of each operation is \(O(1) \) \(\Rightarrow O(n) \) running time.
 * Each element can be popped at most once each time it is pushed
 - Number of POP operations (including the one done by MULTIPOP) is bounded by \(n \)
 - Total cost of \(n \) operations is \(O(n) \)
 - Amortized cost of one operation is \(O(n)/n = O(1) \).

1.2 Example: Binary counter

- Consider the following (somewhat artificial) data structure problem: Maintain a binary counter under \(n \) INCREMENT operations (assuming that the counter value is initially 0)
 - Data structure consists of an (infinite) array \(A \) of bits such that \(A[i] \) is either 0 or 1.
 - \(A[0] \) is lowest order bit, so value of counter is \(x = \sum_{i \geq 0} A[i] \cdot 2^i \)
 - INCREMENT operation:

\[
\begin{align*}
A[0] &= A[0] + 1 \\
\text{WHILE } A[i] &= 2 \text{ DO}
\begin{align*}
A[i + 1] &= A[i + 1] + 1 \\
A[i] &= 0 \\
i &= i + 1 \\
\text{OD}
\end{align*}
\end{align*}
\]

- The running time of INCREMENT is the number of iterations of while loop +1.

Example (Note: Bit furthest to the right is \(A[0] \)):

\[
x = 47 \Rightarrow A = \langle 0, \ldots, 0, 1, 0, 1, 1, 1, 1 > \\
x = 48 \Rightarrow A = \langle 0, \ldots, 0, 1, 1, 0, 0, 0 > \\
x = 49 \Rightarrow A = \langle 0, \ldots, 0, 1, 1, 0, 0, 1 > \\
\]

INCREMENT from \(x = 47 \) to \(x = 48 \) has cost 5
INCREMENT from \(x = 48 \) to \(x = 49 \) has cost 1
• Analysis of a sequence of \(n \) INCREMENTS

 – Number of bits in representation of \(n \) is \(\log n \Rightarrow n \) operations cost \(O(n \log n) \).

 – Amortized running time of INCREMENT is \(O(1) \Rightarrow O(n) \) running time:

 * \(A[0] \) flips on each increment (\(n \) times in total)

 * \(A[1] \) flips on every second increment (\(n/2 \) times in total)

 * \(A[2] \) flips on every fourth increment (\(n/4 \) times in total)

 :

 * \(A[i] \) flips on every \(2^i \)th increment (\(n/2^i \) times in total)

 \(\Downarrow \)

 Total running time:

 \[
 T(n) = \sum_{i=0}^{\log n} \frac{n}{2^i} \leq n \cdot \sum_{i=0}^{\log n} \left(\frac{1}{2} \right)^i = O(n)
 \]

2 Potential Method

• In the two previous examples we basically just did a careful analysis to get \(O(n) \) bounds leading to \(O(1) \) amortized bounds.

 – book calls this aggregate analysis.

• In aggregate analysis, all operations have the same amortized cost (total cost divided by \(n \))

 – other and more sophisticated amortized analysis methods allow different operations to have different amortized costs.

• Potential method:

 – Idea is to overcharge some operations and store the overcharge as credits/potential which can then help pay for later operations (making them cheaper).

 – Leads to equivalent but slightly different definition of amortized time.

• Consider performing \(n \) operations on an initial data structure \(D_0 \)

 – \(D_i \) is data structure after \(i \)th operation, \(i = 1, 2, \ldots, n \).

 – \(c_i \) is actual cost (time) of \(i \)th operation, \(i = 1, 2, \ldots, n \).

 \(\Downarrow \)

 Total cost of \(n \) operations is \(\sum_{i=0}^{n} c_k \).

• We define potential function mapping \(D_i \) to \(R \). (\(\Phi : D_i \rightarrow R \))

 – \(\Phi(D_i) \) is potential associated with \(D_i \)

• We define amortized cost \(\tilde{c}_i \) of \(i \)th operation as \(\tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \)

 – \(\tilde{c}_i \) is sum of real cost and increase in potential

 \(\Downarrow \)

 – If potential decreases the amortized cost is lower than actual cost (we use saved potential/credits)

 – If potential increases the amortized cost is larger than actual cost (we overcharge operation to save potential/credits).
• Key is that, as previously, we can bound total cost of all the \(n \) operations by the total amortized cost of all \(n \) operations:

\[
\sum_{i=1}^{n} c_k = \sum_{i=1}^{n} (\tilde{c}_i + \Phi(D_{i-1}) - \Phi(D_i)) = \Phi(D_0) - \Phi(D_n) + \sum_{i=1}^{n} \tilde{c}_i
\]

\[
\therefore \sum_{i=1}^{n} c_k \leq \sum_{i=1}^{n} \tilde{c}_i \text{ if } \Phi(D_0) = 0 \text{ and } \Phi(D_i) \geq 0 \text{ for all } i \text{ (or even if just } \Phi(D_n) \geq \Phi(D_0))
\]

Note: Amortized time definition consistent with earlier definition \(\frac{1}{n} \sum c_i = \frac{1}{n} \sum \tilde{c}_i \). \(\tilde{c}_i \) equal for all \(i \Rightarrow \tilde{c}_i = \frac{1}{n} \sum c_i \)

2.1 Example: Stack with multipop

• Define \(\Phi(D_i) \) to be the size of stack \(D_i = \Phi(D_0) = 0 \) and \(\Phi(D_i) \geq 0 \)

• Amortized costs:

 – **Push:**

 \[
 \tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 + 1 = 2 = O(1).
 \]

 – **Pop:**

 \[
 \tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 + (-1) = 0 = O(1).
 \]

 – **Multipop(\(k\)):**

 \[
 \tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = k + (-k) = 0 = O(1).
 \]

• Total cost of \(n \) operations: \(\sum_{i=1}^{n} c_k \leq \sum_{i=1}^{n} \tilde{c}_i = O(n) \).

2.2 Example: Binary counter

• Define \(\Phi(D_i) = \sum_{i \geq 0} A[i] = \Phi(D_0) = 0 \) and \(\Phi(D_i) \geq 0 \)

 – \(\Phi(D_i) \) is the number of ones in counter.

• Amortized cost of \(i \)th operation: \(\tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \)

 – Consider the case where first \(k \) positions in \(A \) are 1 \(A = <0,0,\ldots,1,1,1,1,\ldots,1> \)

 – In this case \(c_i = k + 1 \)

 – \(\Phi(D_i) - \Phi(D_{i-1}) \) is \(-k + 1 \) since the first \(k \) positions of \(A \) are 0 after the increment and the \(k + 1 \)th position is changed to 1 (all other positions are unchanged)

 \[
 \therefore \tilde{c}_i = k + 1 - k + 1 = 2 = O(1)
 \]

• Total cost of \(n \) increments: \(\sum_{i=1}^{n} c_k \leq \sum_{i=1}^{n} \tilde{c}_i = O(n) \).
2.3 Notes on amortized cost

- Amortized cost depends on choice of Φ

- Different operations can have different amortized costs.

- Often we think about potential/credits as being distributed on certain parts of data structure.

In multipop example:

- Every element holds one credit.
- **PUSH**: Pay for operation (cost 1) and for placing one credit on new element (cost 1).
- **POP**: Use credit of removed element to pay for the operation.
- **MULTIPOP**: Use credits on removed elements to pay for the operation.

In counter example:

- Every 1 in A holds one credit.
- Change from $1 \rightarrow 0$ payed using credit.
- Change from $0 \rightarrow 1$ payed by **INCREMENT**; pay one credit to do the flip and place one credit on new 1.

\[\Downarrow \]

INCREMENT cost $O(1)$ amortized (at most one $0 \rightarrow 1$ change).

- Book calls this the *accounting method*

 - Note: Credits only used for analysis and is not part of data structure

- Hard part of amortized analysis is often to come up with potential function Φ

 - Some people prefer using potential function (*potential method*), some prefer thinking about placing credits on data structure (*Accounting method*)

 - Accounting method often good for relatively easy examples.

- Amortized analysis defined in late ’80-ies ⇒ great progress (new structures!)

- Next time we will discuss an elegant “self-adjusting” search tree data structure with amortized $O(\log n)$ bonds for all operations (*splay trees*).