Course 16
Geometric Data Structures for Computer Graphics

Quadtrees

Dr. Elmar Langetepe
Institut für Informatik I
Universität Bonn
Set of points, initial square Q and root R of the tree.

Subdivision into quadrants in counterclockwise order.

Recursively, until square has ≤ 1 objects.

Node v represents square $Q(v)$.

Recursive construction of the tree: given points/initial square.
Definition Quadtree

- Rooted tree
- Internal nodes have 4 children
- Every node represents a square
- Children represent subsquares of the square
- Geometric data of squares (leaves): Points, Lines, Rectangles, Ellipses
- Octree → 8 children, Boxes, higher Dimensions
Properties

- Quadtrees of depth d with n points
- Number of nodes: $\mathcal{O}(dn)$
 - Number of leaves: $3 \times \# \text{Internal nodes} + 1$
 - At every depth only n internal nodes
- Construction: $\mathcal{O}(dn)$ time
 - Every depth in the recursive construction
 - Distribution of points: Linear in the number of points
- Depth of the quadtree depends on distances of objects:
 - Let c be the distance of the closest pair
 - Let s be the side length of the initial Q
 - Depth $d \leq \log(s/c) + \frac{3}{2}$
- Balancing depend on objects
Application Nearest Neighbors

• Compute List of Nearest Neighbors of a query point q
• Idea: Observe Neighboring quadrants recursively
 – Find quadrant of query point q in $O(d)$ time
 – Build Priority-Queue P: Visited squares sorted by distance in $O(d \log d)$ time
 – Iteration
 * Take first (closest) square/object O of P
 * Object: \Rightarrow report
 * Square: \Rightarrow insert subsquares or single object into P
 * Delete O out of P
 * Repeat until P is empty
• Time: $O(n \log n)$

Nearest Neighbor Applet by F. Brabec and H. Samet